The Unique Challenges of Lyme Disease and a Multi-Pronged Strategy to Address Them

by Carrie Decker, ND


1. Balmelli T, Piffaretti JC. Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res Microbiol. 1995 May;146(4):329-40.

2. Rudenko N, et al. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis. 2011 Sep;2(3):123-8.

3. Lantos PM, Wormser GP. Chronic coinfections in patients diagnosed with chronic lyme disease: a systematic review. Am J Med. 2014 Nov;127(11):1105-10.

4. Mitchell PD, et al. Immunoserologic evidence of coinfection with Borrelia burgdorferi, Babesia microti, and human granulocytic Ehrlichia species in residents of Wisconsin and Minnesota. J Clin Microbiol. 1996 Mar;34(3):724-7.

5. Diuk-Wasser MA, et al. Coinfection by Ixodes Tick-Borne Pathogens: Ecological, Epidemiological, and Clinical Consequences. Trends Parasitol. 2016 Jan;32(1):30-42.

6. Zajkowska J, et al. [Atypical forms of Borrelia burgdorferi--clinical consequences]. Pol Merkur Lekarski. 2005 Jan;18(103):115- 9.

7. Singh SK, Girschick HJ. Molecular survival strategies of the Lyme disease spirochete Borrelia burgdorferi. Lancet Infect Dis. 2004 Sep;4(9):575-83.

8. Sapi E, et al Characterization of biofilm formation by Borrelia burgdorferi in vitro. PloS One. 2012 Oct 24;7(10):e48277.

9. Miklossy J, et al. Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J Neuroinflammation. 2008 Sep 25;5:40.

10. Steere AC, et al. Prospective study of serologic tests for lyme disease. Clin Infect Dis. 2008 Jul 15;47(2):188-95.

11. Klayman DL. Qinghaosu (artemisinin): an antimalarial drug from China. Science. 1985 May 31;228(4703):1049-55.

12. Tariq A, et al. Ethnomedicines and anti-parasitic activities of Pakistani medicinal plants against Plasmodia and Leishmania parasites. Ann Clin Microbiol Antimicrob. 2016 Sep 20;15(1):52.

13. White NJ, et al. A Brief History of Qinghaosu. Trends Parasitol. 2015 Dec;31(12):607-610.

14. Bilia AR, et al. Essential Oil of Artemisia annua L.: An Extraordinary Component with Numerous Antimicrobial Properties. Evid Based Complement Alternat Med. 2014;2014:159819.

15. Efferth T, et al. The antiviral activities of artemisinin and artesunate. Clin Infect Dis. 2008 Sep 15;47(6):804-11.

16. D’Angelo JG, et al. Artemisinin derivatives inhibit Toxoplasma gondii in vitro at multiple steps in the lytic cycle. J Antimicrob Chemother. 2009 Jan;63(1):146-50.

17. Loo CS, et al. Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol Res. 2017 Mar;117:192-217.

18. Goo YK, et al. Artesunate, a potential drug for treatment of Babesia infection. Parasitol Int. 2010 Sep;59(3):481-6.

19. Goswami S, et al. Anti-Helicobacter pylori potential of artemisinin and its derivatives. Antimicrob Agents Chemother. 2012 Sep;56(9):4594-607.

20. Bilia AR, et al. Essential Oil of Artemisia annua L.: An Extraordinary Component with Numerous Antimicrobial Properties. Evid Based Complement Alternat Med. 2014;2014:159819.

21. Militaru D, et al. In vitro evaluation of the potential antibacterial effect of artemisinin on Campylobacter jejuni. Rom Biotech Let. 2015 Mar 1;20(2):10221-7.

22. Engberg RM, et al. The effect of Artemisia annua on broiler performance, on intestinal microbiota and on the course of a Clostridium perfringens infection applying a necrotic enteritis disease model. Avian Pathology. 2012 Aug 1;41(4):369-76.

23. De Cremer K, et al. Artemisinins, new miconazole potentiators resulting in increased activity against Candida albicans biofilms. Antimicrob Agents Chemother. 2015 Jan;59(1):421-6.

24. Sisto F, et al. In vitro activity of artemisone and artemisinin derivatives against extracellular and intracellular Helicobacter pylori. Int J Antimicrob Agents. 2016 Jul;48(1):101-5

25. Puri BK, et al. The effect of artesunate on short-term memory in Lyme borreliosis. Med Hypotheses. 2017 Aug;105:4-5.

26. Avula B, et al. Simultaneous identification by liquid chromatography of benzethonium chloride, methyl paraben and triclosan in commercial products labeled as grapefruit seed extract. Pharmazie. 2007 Aug;62(8):593-596.

27. Sugimoto N, et al. [Survey of synthetic disinfectants in grapefruit seed extract and its compounded products]. Shokuhin Eiseigaku Zasshi. 2008 Feb;49(1):56-62.

28. Brorson O, Brorson SH. Grapefruit seed extract is a powerful in vitro agent against motile and cystic forms of Borrelia burgdorferi sensu lato. Infection. 2007 Jun 1;35(3):206.

29. Goc A, Rath M. The anti-borreliae efficacy of phytochemicals and micronutrients: an update. Ther Adv Infect Dis. 2016 Jun;3(3- 4):75-82.

30. Ionescu G, et al. Oral citrus seed extract in atopic eczema: In vitro and in vivo studies on intestinal microflora. J Orthomolecular Med. 1990;5:155-7.

31. Wurm M, et al. Pentacyclic oxindole alkaloids from Uncaria tomentosa induce human endothelial cells to release a lymphocyteproliferation-regulating factor. Planta Med. 1998 Dec;64(8):701-4.

32. Domingues A, et al. Uncaria tomentosa aqueous-ethanol extract triggers an immunomodulation toward a Th2 cytokine profile. Phytother Res. 2011 Aug;25(8):1229-35.

33. Mur E, et al. Randomized double blind trial of an extract from the pentacyclic alkaloid-chemotype of uncaria tomentosa for the treatment of rheumatoid arthritis. J Rheumatol. 2002 Apr;29(4):678-81.

34. Piscoya J, et al. Efficacy and safety of freeze-dried cat’s claw in osteoarthritis of the knee: mechanisms of action of the species Uncaria guianensis. Inflamm Res. 2001 Sep;50(9):442-8.

35. Gonçalves C, Dinis T, Batista MT. Antioxidant properties of proanthocyanidins of Uncaria tomentosa bark decoction: a mechanism for anti-inflammatory activity. Phytochemistry. 2005 Jan;66(1):89-98.

36. Sandoval M, et al. Cat’s claw inhibits TNFalpha production and scavenges free radicals: role in cytoprotection. Free Radic Biol Med. 2000 Jul 1;29(1):71-8.

37. Mohamed AF, et al. Effects of Uncaria tomentosa total alkaloid and its components on experimental amnesia in mice: elucidation using the passive avoidance test. J Pharm Pharmacol. 2000 Dec;52(12):1553-61.

38. Lee SC, et al. Effects of repeated administration of Uncaria hooks on the acquisition and central neuronal activities in ethanoltreated mice. J Ethnopharmacol. 2004 Sep;94(1):123-8.

39. Santo GD, et al. Protective effect of Uncaria tomentosa extract against oxidative stress and genotoxicity induced by glyphosateRoundup® using zebrafish (Danio rerio) as a model. Environ Sci Pollut Res Int. 2018 Feb 13.

40. Siqueiros-Cendón T, et al. Immunomodulatory effects of lactoferrin. Acta Pharmacol Sin. 2014 May;35(5):557-66.

41. Moreno-Expósito L, et al. Multifunctional capacity and therapeutic potential of lactoferrin. Life Sci. 2018 Feb 15;195:61-64.

42. Singh PK, et al. A component of innate immunity prevents bacterial biofilm development. Nature. 2002 May;417(6888):552.

43. Haenel D, Sapi E. Significant antimicrobial effects of lactoferrin on Borrelia burgdorferi biofilm. University of New Haven. Poster.

44. Ikadai H, et al. Inhibitory effect of lactoferrin on in vitro growth of Babesia caballi. Am J Trop Med Hyg. 2005 Oct;73(4):710-2.

45. Butler T. The Jarisch-Herxheimer Reaction After Antibiotic Treatment of Spirochetal Infections: A Review of Recent Cases and Our Understanding of Pathogenesis. Am J Trop Med Hyg. 2017 Jan 11;96(1):46-52.

46. Maloy AL, Black RD, Segurola RJ Jr. Lyme disease complicated by the Jarisch-Herxheimer reaction. J Emerg Med. 1998 MayJun;16(3):437-8.

47. Webster G, et al. Jarisch-Herxheimer reaction associated with ciprofloxacin administration for tick-borne relapsing fever. Pediatr Infect Dis J. 2002 Jun;21(6):571-3.

48. Zhang GH, et al. Neutralization of endotoxin in vitro and in vivo by a human lactoferrin-derived peptide. Infect Immun. 1999 Mar;67(3):1353-8.

49. Elass-Rochard E, et al. Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharidebinding protein. Infect Immun. 1998 Feb;66(2):486-91.

50. Mattsby-Baltzer I, et al. Lactoferrin or a fragment thereof inhibits the endotoxin-induced interleukin-6 response in human monocytic cells. Pediatr Res. 1996 Aug;40(2):257-62.

51. Drago-Serrano ME, et al. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections. Int J Mol Sci. 2017 Mar 1;18(3).

52. Kruzel ML, et al. Lactoferrin protects gut mucosal integrity during endotoxemia induced by lipopolysaccharide in mice. Inflammation. 2000 Feb;24(1):33-44.

53. Lee WJ, et al. The protective effects of lactoferrin feeding against endotoxin lethal shock in germfree piglets. Infect Immun. 1998 Apr;66(4):1421-6.

54. Gerente C, et al. Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit Rev Enviro Sci Tech. 2007 Jan 1;37(1):41-127.

55. Dehghani MH, et al. Adsorptive removal of endocrine disrupting bisphenol A from aqueous solution using chitosan. J Enviro Chem Eng. 2016 Sep 30;4(3):2647-55.

56. Salim CJ, Liu H, Kennedy JF. Comparative study of the adsorption on chitosan beads of phthalate esters and their degradation products. Carbo Polymers. 2010 Jul 7;81(3):640-4.

57. Dehghani MH, et al. Adsorptive removal of endocrine disrupting bisphenol A from aqueous solution using chitosan. J Enviro Chem Eng. 2016 Sep 30;4(3):2647-55.

58. Bornet A, Teissedre PL. Chitosan, chitin-glucan and chitin effects on minerals (iron, lead, cadmium) and organic (ochratoxin A) contaminants in wines. Euro Food Res Tech. 2008 Feb 1;226(4):681-9.

59. Quintela S, et al. Ochratoxin A removal from red wine by several oenological fining agents: bentonite, egg albumin, allergenfree adsorbents, chitin and chitosan. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012;29(7):1168-74.

60. Guan B, et al. Removal of Mn (II) and Zn (II) ions from flue gas desulfurization wastewater with water-soluble chitosan. Sep Purif Tech. 2009 Mar 12;65(3):269-74.

61. Wu ZB, Ni WM, Guan BH. Application of chitosan as flocculant for coprecipitation of Mn (II) and suspended solids from dualalkali FGD regenerating process. J Haz Mat. 2008 Apr 1;152(2):757-64.

62. Troxell B, et al. Manganese and zinc regulate virulence determinants in Borrelia burgdorferi. Infect Immun. 2013 Aug;81(8):2743-52.

63. Aguirre JD, et al. A manganese-rich environment supports superoxide dismutase activity in a Lyme disease pathogen, Borrelia burgdorferi. J Biol Chem. 2013 Mar 22;288(12):8468-78.

64. Pu Y, et al. In vitro damage of Candida albicans biofilms by chitosan. Exp Ther Med. 2014 Sep;8(3):929-934.

65. Chávez de Paz LE, et al. Antimicrobial effect of chitosan nanoparticles on streptococcus mutans biofilms. Appl Environ Microbiol. 2011 Jun;77(11):3892-5.

66. Davydova VN, et al. Interaction of bacterial endotoxins with chitosan. Effect of endotoxin structure, chitosan molecular mass, and ionic strength of the solution on the formation of the complex. Biochemistry (Mosc). 2000 Sep;65(9):1082-90.

67. Solov’eva T, et al. Marine compounds with therapeutic potential in gram-negative sepsis. Mar Drugs. 2013 Jun 19;11(6):2216- 29.

68. Hines SW. Nano-Particle Chitosan: New Hope for Lyme-Related Herxheimer Symptoms. Focus. 2007 July:9-10.

69. Lee HW, et al. Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe. 2002 Dec;8(6):319-24.

70. Cani PD, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007 Nov 1;50(11):2374-83.

71. Roselli M, et al. Probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli K88. Brit J Nutr. 2006 Jun;95(6):1177-84.

72. Peacock BN, et al. New insights into Lyme disease. Redox Biol. 2015 Aug;5:66-70.

73. Sambri V, Cevenini R. Incorporation of cysteine by Borrelia burgdorferi and Borrelia hermsii. Can J Microbiol. 1992 Oct;38(10):1016-21.

74. Nicolson GL, et al. Lipid replacement therapy with a glycophospholipid formulation with NADH and CoQ10 significantly reduces fatigue in intractable chronic fatiguing illnesses and chronic Lyme disease patients. Int J Clin Med. 2012 May 29;3(03):163.

75. Nicolson GL. Lipid replacement/antioxidant therapy as an adjunct supplement to reduce the adverse effects of cancer therapy and restore mitochondrial function. Pathol Oncol Res. 2005;11(3):139-44.

76. Agadjanyan M, et al. Nutritional supplement (NT Factor™) restores mitochondrial function and reduces moderately severe fatigue in aged subjects. J Chronic Fat Syn. 2003;11(3):23-36.